
1SE 555 Software Requirements & Specification

Requirements Specifications

2SE 555 Software Requirements & Specification

Types of Requirements and Requirements
Traceability

[RUP]

3SE 555 Software Requirements & Specification

The “Flow” of
Requirements

4SE 555 Software Requirements & Specification

Business
Requirements

• Projects are launched with the belief that the new product will make
the world a better place in some way for someone

• Business Requirements Document
– Background: rationale and context for new product
– Business opportunity

• Market opportunity, internal savings, new capability for internal
customers, etc.

– Business objectives and success criteria
• Measurable, quantitative benefits
• Financial and non-financial

– Customer or market needs
– Business/Project risks

[Wiegers Ch. 5]

5SE 555 Software Requirements & Specification

Business
Context

• Stakeholder profiles
– Identify who will be impacted by success or failure of product/project
– Identify and characterize their interest

• How will they be impacted?
• What role will they play in project?

• Project priorities
– Constraints: limiting factors
– Drivers: significant success objective with little flexibility for adjustment
– Degree of freedom: a factor that can be balanced against constraints

and drivers
• Operating environment

– Use context and required availability, reliability, performance, usability,
etc.

[Wiegers Ch. 5]

6SE 555 Software Requirements & Specification

Software Requirements
Specification

• The Software Requirements Specification (SRS)
captures and organizes the complete software
requirements for the system
– A package containing all the use cases of the use-case

model, plus Supplementary Specifications

• Basis of communication between all parties
– Between the developers themselves
– Between the developers and the external groups (users and

other stakeholders)

• Formally or informally, it represents a contractual
agreement between the various parties
– If it is not in the SRS Package, then the developers shouldn’t

be working on it
– If it is in the SRS Package, then the developers are

accountable to deliver that functionality

Software
Requirements
Specification

[RUP]

7SE 555 Software Requirements & Specification

Characteristics of a Well-Constructed
SRS

• Correct
– Every requirement contributes to the satisfaction of needs

• Complete
– Contains all significant requirements, responses to all inputs and

full labels and references
• Consistent

– No subset of individual requirements is in conflict
• Unambiguous

– Every requirement within it has only one interpretation
• Ranked for importance and stability

– Identifier indicates its importance and stability
• Verifiable (Testable)

– There exists some finite cost-effective process with which a
person or machine can check that the software product meets the
requirement

• Modifiable
– Changes can be made easily, completely, and consistently.

• Traceable
– Facilitates backward and forward referencing

[RUP]

8SE 555 Software Requirements & Specification

Software Requirements Specification
Contents

(as Use Cases)• Use-case model
– A survey of the use-case model
– A collection of use case diagrams, use cases, actors,

relationships, and Use-case package
• Organize and structure use-case models into packages and

sub-packages

• Supplementary specifications
– Capture system requirements that are not readily captured in

behavioral artifacts such as use-case specifications

[RUP]

9SE 555 Software Requirements & Specification

Survey of the Use-Case
Model

• Write a Survey Description that includes
– Which are the primary use cases of the system (the reason the system

is built)
– Typical sequences in which the use cases are employed by the users
– Relationships between use cases (generalizes, extends, includes

relations)
– Package/Sub-package structure of the use cases
– System delimitations – things that the system is not supposed to do
– Important technical facts about the system
– The system's environment, for example, target platforms and existing

software
– Specify functionality not handled by the use-case model

[RUP]

10SE 555 Software Requirements & Specification

Supplementary
Specifications

• Supplementary Specifications capture the system
requirements that are not readily captured in the
use cases of the use-case model
– Legal and regulatory requirements
– Applicable industry or organization standards
– Quality attributes
– Design and implementation requirements (constraints)
– etc.

• These are requirements that apply to the system
as a whole or to multiple use cases
– For requirements specific to a use case, place them in a

“supplementary requirements” section of that use-case
specification

Supplementary
Specifications

[RUP]

11SE 555 Software Requirements & Specification

Other Requirements
Artifacts

12SE 555 Software Requirements & Specification

RUP Artifacts Overview

[RUP]

13SE 555 Software Requirements & Specification

Glossary

• The glossary defines important terms used by the project
• Provides a consistent set of definitions to help avoid

misunderstandings
• Write the requirements and user documentation using

glossary terms

Glossary

[RUP]

14SE 555 Software Requirements & Specification

Requirements
Attributes

• Requirements attributes are information associated with
a particular requirement providing a link between the
requirement and other project elements, such as:
– Priorities
– Schedules
– Status
– Design elements
– Resources
– Costs
– Risks

[RUP]

15SE 555 Software Requirements & Specification

Example Requirements
Attributes

• Tracking status
• Benefit
• Rationale
• Level of effort to implement
• Type and amount of each type

of risk involved in
implementing
– Schedule risk
– Resource risk
– Technical risk

• Stability of the requirement
• Target release
• Assignment
• Marketing input
• Development input
• Revision history
• Location
• Reasons for change
• Inconclusive requirements

[RUP]

16SE 555 Software Requirements & Specification

Requirement Writing Guidelines - 1

• Write complete sentences, using proper grammar.
• Use the active voice.

– Use a format like:
• <system/user> “shall” < action verb> <observable result>

– e.g. “The system shall create a grade record.”
• State requirements in a consistent fashion.

– Use terms consistently (as defined in a glossary).
– Try to write all requirements at approximately the same level of

detail and granularity.
• Avoid being wordy.

– Requirements statements should be just long enough to
convey the clear, correct and complete meaning of a
requirement.

17SE 555 Software Requirements & Specification

Requirement Writing Guidelines - 2

• Avoid use of conjunctions such:
– “and’ “or”, “but”, …

• Avoid vague terms like:
– “user-friendly”, “simple”, “efficient”, “state-of-the art”, “robust”,

“improve”, “optimize”, …

• Avoid redundancy.
– A requirement should appear only once in the SRS.
– Uniquely label each requirement.

• Grouping requirements hierarchically can help make the
functional requirements easier to understand.
– See section 3.1.3 in Wiegers example SRS.

18SE 555 Software Requirements & Specification

A Requirement
Example

4.2.1 (High) The ICS shall …
4.2.2 (High) The ICS shall provide for a class instructor (or a

designated representative) to enter or change grades for students in
the class, for a designated grading element.
4.2.2.1 The ICS shall display a list of grading elements

for the class.
4.2.2.2 When the instructor selects a grading element,

the ICS shall display a list of students, each
with an field for entering or changing a grade.

4.2.2.3 After the instructor enters or changes grades
and submits them, the ICS shall store the
grades in the student records.

4.2.2.4 After submission of grades, the ICS shall display the
grade records, for all students in the class.

19SE 555 Software Requirements & Specification

Requirement
Priorities

• Prioritizing requirements allows customer input into
balancing schedule, cost and quality constraints and
risks,
– It helps manage customer expectations.
– It allows developers to make “customer-oriented” decisions when

development problems arise.
• Prioritizing should begin early and be complete at the

time of agreement over the SRS.
• On a small project stakeholders can agree on priorities

ion an informal basis.
• For complex systems more formal systems may be

needed. (see Table 14-2 in the text for a Prioritization
Matrix).

20SE 555 Software Requirements & Specification

Informal Priority Metric

High
(essential)

Software not acceptable unless
provided in the manner agreed, in
the coming release.

Medium
(conditional)

Desirable, but the product would
not be unacceptable if absent in
the coming release.

Low
(optional)

Nice to have someday, if
resources permit.

21SE 555 Software Requirements & Specification

Requirements Status

Proposed Based on elicitation and analysis, a software requirement
is incorporated in the initial draft of the SRS.

Approved Stakeholders have reviewed the requirement and given
approval for its inclusion in the SRS.

Validated The requirement has been reviewed as part of a formal
inspection process, test scenarios have been developed
that test the requirement, appropriate changes have
been to the requirement, and key stakeholders have
signed off on the SRS containing the requirement.

22SE 555 Software Requirements & Specification

Let Standards Guide You

• Standards collect the best practices and experience of
the industry into consensus techniques and guidelines

• Some organizations or customers require standards
compliance

• See
– IEEE Standard 1223-1998: IEEE Guide for Developing System

Requirements Specifications
– IEEE Standard 830-1998: IEEE Recommended Practice for

Software Requirements Specifications

23SE 555 Software Requirements & Specification

Supplementary
Requirements

The following slides are for your reference—
to remind you of possible non-functional

requirements to capture in the Supplementary
Requirements Specifications

24SE 555 Software Requirements & Specification

Characterizing Requirements:
FURPS+

• One way to categorize requirements: FURPS+
– Functionality
– Usability
– Reliability
– Performance
– Supportability
– “+”

• Design constraints
• Implementation requirements
• Interface requirements
• Physical requirements

Quality requirements
“-ilities”

Non-functional
Requirements

[RUP]

25SE 555 Software Requirements & Specification

Another Way to Characterize Requirements:
CRUPIC STMPL

• Operational categories
– Capability
– Reliability
– Usability
– Performance
– Installability
– Compatibility

• Developmental
categories
– Supportability
– Testability
– Maintainability
– Portability
– Localizability

• Customer and user
requirements

• Mostly visible at run-time

• Developer and support
requirements

• Mostly visible at build-time

[RUP]

26SE 555 Software Requirements & Specification

Usability Requirements

• Learn-ability
• Remember-ability
• Efficiency in use
• Reliability in use
• User satisfaction
• etc.

[RUP]

27SE 555 Software Requirements & Specification

Quality
Attributes

From Len Bass, Paul Clements, Rick
Kazman, Software Architecture in Practice,

Addison-WesleyLongman, 1998

28SE 555 Software Requirements & Specification

“Every good quality is noxious if unmixed.”
(Ralph Waldo Emerson)

• Functionality is the primary, but not the exclusive, quality of a
system
– the mapping of a system’s functionality onto software structures

determines the architecture’s support for qualities
– functionality and other qualities must be designed in from the start

• cannot go back and add in quality

Functional vs.
Nonfunctional

Dichotomy

29SE 555 Software Requirements & Specification

Two Broad
Categories

• Two broad categories
– Observable via execution (run-time behavior)
– Not observable via execution (build-time behavior)

• Qualities are attributes of what?
– The system
– The business
– The architecture

• Quality must be considered during all life-cycle phases
– Different qualities manifest themselves differently during the

phases
– Architecture is critical to realization of many qualities
– Not all qualities are architectural
– Some qualities are architectural and non-architectural

• Qualities are rarely independent ⇒ trade-offs

[Bass, Clements, Katzman, Software Architecture in Practice]

30SE 555 Software Requirements & Specification

System Runtime Quality
Attributes

• Performance
– responsiveness: throughput and latency
– primarily driven by inter-component interaction
– analyzed via stochastic queueing and workload models
– historically, the primary driving factor in architecture (but no longer

alone)
• Security

– denying service to unauthorized usage
– assuring service to authorized usage in spite of unauthorized attempts

at denying services
– architectural solutions

• special security components that coordinate the interaction of the
other components

[Bass, Clements, Katzman, Software Architecture in Practice]

31SE 555 Software Requirements & Specification

System Runtime Quality
Attributes

(continued)
• Availability

– the proportion of time the system is up and running
• realibility (time between failures) and time to repair

– reliability: fault-tolerance, error detection and handling
– repair: fault isolation, ease of component replacement or

modification
• Functionality

– ability to perform the task required
– non-architectural, but allocation of functionality to structure

interacts with architectural qualities
• Usability

− learnability
− efficiency
− memorability
− architecture: information availability and organization; efficiency

− error avoidance
− error handling
− satisfaction

[Bass, Clements, Katzman, Software Architecture in Practice]

32SE 555 Software Requirements & Specification

System Build-Time Quality
Attributes

• Modifiability (maintainability)
– extend or change capabilities
– delete unwanted capabilities
– adapt to new operating environments
– restructure
– architectural issue: scope of change

• local component, a few components, or change in underlying
architectural style

• Portability
– ability to run under different computing hardware/software environments
– approach: isolate platform-specific concerns in a portability layer

[Bass, Clements, Katzman, Software Architecture in Practice]

33SE 555 Software Requirements & Specification

System Build-Time Quality
Attributes

(continued)
• Reusability (integrate-ability, modifiability)

– system structures and/or components can be used in other systems
– architecture: relatively small, loosely coupled components

• Integrability (≡ integrate-ability)
– ability to make components work together
– architecture

• external component complexity
• interaction mechanisms and protocols
• clean separation of concerns
• completeness of specification

– interoperability: integrability of components in one system with those
in another system

• Testability (controllability, observability)
– separation of concerns, information hiding, ‘uses’ structure for

incremental development

[Bass, Clements, Katzman, Software Architecture in Practice]

34SE 555 Software Requirements & Specification

Business
Qualities

• Time to market
– incorporation of existing components

• Cost
– reuse, technical maturity of organization

• System lifetime
– invest in modifiability and portability

• Targeted market
– functionality, portability, performance, reliability, usability,

product line architecture
• Rollout schedule

– modifiability (flexibility, customizability, extensibility)
• Use of legacy systems

– integrability

[Bass, Clements, Katzman, Software Architecture in Practice]

	Requirements Specifications
	Types of Requirements and Requirements Traceability
	The “Flow” of Requirements
	Business Requirements
	Business Context
	Software Requirements Specification
	Characteristics of a Well-Constructed SRS
	Software Requirements Specification Contents�(as Use Cases)
	Survey of the Use-Case Model
	Supplementary Specifications
	Other Requirements Artifacts
	RUP Artifacts Overview
	Glossary
	Requirements Attributes
	Example Requirements Attributes
	Requirement Writing Guidelines - 1
	Requirement Writing Guidelines - 2
	A Requirement Example
	Requirement Priorities
	Informal Priority Metric
	Requirements Status
	Let Standards Guide You
	Supplementary Requirements
	Characterizing Requirements: FURPS+
	Another Way to Characterize Requirements:�CRUPIC STMPL
	Usability Requirements
	Quality Attributes
	“Every good quality is noxious if unmixed.”�(Ralph Waldo Emerson)
	Two Broad Categories
	System Runtime Quality Attributes
	System Runtime Quality Attributes�(continued)
	System Build-Time Quality Attributes
	System Build-Time Quality Attributes�(continued)
	Business Qualities

